		Answer	Marks	Additional guidelines
1	(a)		1 1 1 1	Accept as a -X - bulb Accept 'rheostat'
	(b) (i)	$\begin{aligned} & \mathrm{P}=\mathrm{I} \times \mathrm{V} \\ & \mathrm{P}=4 \times 240 \\ & \mathrm{P}=960 \mathrm{~W} \text { or } \mathrm{J} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	For value For correct units
	(ii)	960 J per second	1	
	(iii)	5 A The fuse amperage is slightly more than the maximum current as a safety feature so that if the current increases the fuse will melt		Do not accept a different value from 5A
	(iii)	Ohm's law states that the potential difference across an electrical conductor is proportional to the current Provided that the temperature remains constant	$\begin{array}{\|l} 1 \\ 1 \\ \hline \end{array}$	
	(c) (i)	$0.5-0.4=0.1 \mathrm{~A}$	1	
	(ii)	$\begin{aligned} \text { Across } 40 \Omega \quad \mathrm{~V} & =\mathrm{I} \times \mathrm{R} \\ & =0.4 \times 40 \\ & =16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	For value For correct units
	(iii)	$16 \mathrm{~V}$ The p.d. across resistors in parallel is equal	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(iv)	$\begin{aligned} & \text { Across } \mathrm{R} \\ & \mathrm{~V}=\mathrm{I} \times \mathrm{R} \\ & 16=0.1 \mathrm{R} \\ & 160 \Omega=\mathrm{R} \end{aligned}$	1 for value, 1 for units	
	(d) (i)	Thicker wire - (less resistance) - more current	1	If d (i) and (ii) are answered in terms of resistance and are both correct, then give 1 mark overall
	(ii)	Longer wire - (more resistance) - less current	1	
		Total	20 marks	

		Answer	Marks	Additional guidelines
2	(a)	24 hours 365 days	1 1	Accept ' 1 day' Accept ' 1 year'
	(b)	Gravitational force	1	Accept the mass and velocity
	(c)	Communication / military communication; high orbit above equator / seems to be in a fixed position Monitoring weather / spying low orbit around the poles many times a day	1 1 1 \qquad 1 1 1 \qquad -	
	(d) (i)	Gas, dust	1,1	
	(ii)	Gravitational force	1	
	(iii)	A star gives out its out light, a planet reflects the light of a star A star has planets orbiting around it; a planet has satellites (moons) orbiting around it	1 1	
	(e) (i)	A galaxy is a collection of solar systems	1	
	(ii)	Milky Way	1	
	(f) (i)	Red Shift Moving Faster Expanding Universe Big Bang	1 1 1 1 1 1	
		Total	20 marks	
3	(a) (i)	$\begin{array}{\|l\|} 6 \\ 4 \\ 2 \\ 1 \\ 3 \\ 5 \\ \hline \end{array}$	5 marks 3 marks	All correct One pair mixed up Else 0 marks
	(ii)	temporary permanent		
	(iii)		1 1	For shape of field For correct direction of field

		Answer		Marks	Additional guidelines
	(iv)	The needle of the compass will point away from the north pole of the bar magnet and towards the south pole of the bar magnet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b) (i)	The rod became charged		1	
	(ii)	Because a charged object exerts an attractive force toward charged and / or non-charged objects		$\begin{array}{\|l\|} 1 \\ 1 \end{array}$	
	(iii)	Repulsion between like charges Attraction between unlike charges		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(iv)	+ ve charge - Perspex / acetate / glass - ve charge - polythene / polyester / PVC		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(v)	Fuel tankers make use of a length of chain dangling to the ground to dissipate charge / Lightning conductors on buildings dissipate charge to the ground / Airport trolleys may have a small piece of conductor dangling to the ground to dissipate accumulated charge		1,1	Any suitable answer
			Total	20 marks	
4	(a) (i)	226		$1 \begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(ii)	Alpha Beta Gamma	α β γ	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	To obtain 1 mark both the name and symbol must be correct. If all text is correct but symbols are wrong, give overall 1 mark
	(b) (i)	Gamma		1	
	(ii)	Beta		1	
	(iii)	Alpha		1	
	(c) (i)	$\begin{array}{\|l\|} \hline 0.5 \mathrm{~g} \\ 0.25 \mathrm{~g} \\ \hline \end{array}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept $1 / 2$ and $1 / 4$
	(ii)	No Its half life is very long - 1600 years		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept similar answers
	(d) (i)	${ }_{1}^{1} H{ }_{1}^{3} H$		1	Both need to be correct
	(ii)	GM tube		1	
	(iii)	A GM tube is brought close to the plant, a short,			

		Answer		Additional guidelines
		fixed distance above the soil The plant is watered using radioactive water and a stop watch started Once the GM tube starts to detect radiation, both the height above the soil and the time are noted. The GM tube is moved to a higher point and the process is repeated.		
	(iv)	A small amount of radioactive water is used / body contact with radioactive water is avoided / protective clothing		Any other plausible answer
5	(a) (i)	Both touched the ground together Since on the moon there is a vacuum, both were equally attracted by the moon's gravitational force		Accept 'there is no air resistance on the moon'
	(ii)	Hammer Due to air resistance, the feather will take longer to touch the ground		
	(b) (i)	0	m / s	
		10	$\mathrm{m} / \mathrm{s}^{2}$	
	(ii)	Both the orange and the grape reached the ground together		
	(c) (i)	Measuring tape Stop watch		
	(ii)	So that air resistance will not interfere with the falling mass as it is small compared to the weight		
	(d) (i)	electromagnet, timer trapdoor / circuit breaker		
	(ii)	$\begin{array}{\|l\|} \hline s \text { - distance } \\ \mathrm{a} \text { - acceleration due to gravity } \\ \mathrm{t} \text { - time } \\ \hline \end{array}$		
	(iii)	Reliability of results / more accurate results		
	(iv)	Ball is dropped and timer is started instantly / Ball touches the ground and timer is switched off instantly		Accept 'reduce human error' or 'reaction time'

		Answer	Marks	Additional guidelines
			Total	20 marks

PHYSICS SEC MAY 2010 - MARKING SCHEME - PAPER IIA

		Answer	Marks	Additional guidelines
1	(a)		1 1 1 1	
	(b) (i)	$\begin{aligned} & \mathrm{P}=\mathrm{I} \times \mathrm{V} \\ & 960=\mathrm{I} \times 240 \\ & 4 \mathrm{~A}=\mathrm{I} \end{aligned}$	$\begin{array}{\|l} 1 \\ 1 \\ \hline \end{array}$	For value For correct units
	(ii)	5 A The fuse amperage is slightly more than the maximum current as a safety feature so that if the current increases the fuse will melt		Do not accept 4.5 A or 6 A
	(iii)	$\begin{array}{lc} \mathrm{V}=\mathrm{I} \times \mathrm{R} \text { or } & \mathrm{P}=\mathrm{V}^{2} / \mathrm{R} \\ 240=4 \times \mathrm{R} & 960=240^{2} / \mathrm{R} \\ 60 \Omega=\mathrm{R} & \mathrm{R}=60 \Omega \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	For value For correct units
	(iv)	960 J per second or W	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	For value For correct units
	(c) (i)	$0.5-0.4=0.1 \mathrm{~A}$	1	
	(ii)	$\begin{aligned} \text { Across } 40 \Omega \quad \mathrm{~V} & =\mathrm{I} \times \mathrm{R} \\ & =0.4 \times 40 \\ & =16 \mathrm{~V} \\ \text { Across } \mathrm{R} \quad \mathrm{~V} & =\mathrm{I} \times \mathrm{R} \\ 16 & =0.1 \mathrm{R} \\ 160 \Omega & =\mathrm{R} \end{aligned}$		Other methods may be used to arrive at the same answer
	(d) (i)	$\begin{aligned} & \text { Across } 3 \Omega \text { resistor } \quad \begin{aligned} \mathrm{V} & =\mathrm{I} \times \mathrm{R} \\ & =1.25 \times 3 \\ & =3.75 \mathrm{~V} \end{aligned} \\ & \\ & \text { p.d. across } \mathrm{X}=6-3.75=2.25 \mathrm{~V} \\ & \text { Across } \mathrm{X} \quad \mathrm{~V}=\mathrm{I} \times \mathrm{R} \\ & 2.25=1.25 \times \mathrm{R} \\ & \mathrm{X}=1.8 \Omega \end{aligned}$	1 1 1	Other methods may be used to arrive at the same answer

		Answer	Marks	Additional guidelines
	(ii)	Current is proportional to thickness	1	Accept the thicker the resistor the lower the resistance or vice-versa; Thicker wire (less resistance) - more current
	(iii)	Current is inversely proportional to length	1	Longer wire - (more resistance) - less current
		Total	20 marks	
2	(a)	Earth spins upon itself every 24 hours Earth orbits the sun every 365 days	1	Accept an answer in terms of motion only without giving the time
	(b)	Gravitational force	1	Do not accept 'gravity' only or 'centripedal force'
	(c)	Monitoring weather - polar satellite; low orbit around the poles many times a day Communication - geostationary satellite; high orbit above equator / seems to be in a fixed position	$1,1$ $1,1$	
	(d) (i)	Gas and dust come together due to gravitational forces.	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(ii)	Planets	1	
	(iii)	A star gives out its own light, a planet reflects the light of a star A star has planets orbiting around it; a planet has satellites (moons) orbiting around it		Do not accept that a star has a larger mass than a planet
	(e) (i)	A galaxy is a collection of solar systems	1	Do not accept 'group of stars' only
	(ii)	Milky Way	1	
	(f) (i)	Red Shift	1	
	(ii)	Galaxies are moving away from us	1	
	(iii)	The further away the galaxy is, the faster it is moving away from us	1	
	(g)	Big Bang Theory suggests that all the matter in the universe was concentrated into a single incredibly tiny point. This began to enlarge rapidly in a hot big bang and it is still expanding. The big bang was initially suggested because it explains why distant galaxies are travelling away from us at great speeds.	1 1 1	
		Total	20 marks	

		Answer	Marks	Additional guidelines
3	(a) (i)	Place one end of one bar close to but not touching the other and feel the force between them If a force of attraction is noticed, turn around one of the bars If an attractive force is again noticed, then one of the bars is a magnet and the other is just made of magnetic material / metal If at any stage, a repulsive force is noticed, then both bars must be magnets	1 1 1 1	Do not accept experiment using iron filings If experiment includes use of magnetic compass around magnet and around metal bar, give a maximum of 3 marks
	(ii)	Steel Since it has retained its magnetism for a long time, it must be a permanent magnet	1 1	Accept 'hard iron'
	(iii)		1 1	Shape of field Correct direction of field lines
	(iv)	The needle of the compass will point away from the north pole of the bar magnet and towards the south pole of the bar magnet	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b) (i)	Electrostatic induction The rod acquires an electrostatic charge which attracts uncharged objects	$\begin{array}{\|l} 1 \\ 1 \\ 1 \end{array}$	'Induction' only is not correct
	(ii)	The two charged rods are tied separately to two lengths of nylon and brought close to each other If they attract each other the unknown rod is negative / have unlike charge If they repel each other the unknown rod is positive / have like charge	1 1 1	
	(iii)	+ve - Perspex / acetate / glass -ve - polythene / polyester / PVC	$\begin{array}{\|l\|} 1 \\ 1 \\ \hline \end{array}$	
	(iv)	Fuel tankers make use of a length of chain dangling to the ground to dissipate charge / Lightning conductors dissipate charge to the ground / Airport trolleys may have a small piece of conductor dangling to the ground to dissipate accumulated charge	1,1	Any suitable answer
		Total	20 marks	

		Answer	Marks	Additional guidelines
4	(a) (i)	Isotopes are atoms of the same element having the same atomic / proton number But different mass / nucleon number	$\begin{array}{\|l} 1 \\ 1 \\ \hline \end{array}$	
	(ii)	A GM tube is brought close to the plant, a short, fixed distance above the soil The plant is watered using radioactive water and a stop watch started Once the GM tube starts to detect radiation, both the height above the soil and the time are noted. The GM tube is moved to a higher point and the process is repeated.	1 1 1 1	
	(iii)	A small amount of radioactive water is used / body contact with radioactive water is avoided	1,1	Any other plausible precaution
	(iv)	To detect uniform thickness of materials / to detect leakages in underground pipelines	1	Do not accept ' treatment of cancer' as this is not an industrial use
	(b) (i)	Mass number - 226 Atomic number - 88 Number of protons - 88 Number of neutrons - 138	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(ii)	Half life is the time taken for half the atoms in a radioactive element to decay	1	
	(iii)	$\begin{aligned} 1600 & \rightarrow 1600 \rightarrow 1600=4800 \text { years } \\ 1 & \rightarrow 1 / 2 \rightarrow 1 / 4 \rightarrow 1 / 8 \end{aligned}$	$\begin{array}{\|l\|} 1 \\ 1 \\ \hline \end{array}$	
	(iv)	The alpha particle would definitely not be able to pass through the watch glass, The beta particle may pass and The gamma will pass. However, given the small amount of radium present, the amount of gamma radiation would be small. Not very dangerous to wear but better not to.	1 1 1 1	
		Total	20 marks	
5	(a) (i)	Both touched the ground together Since on the moon there is a vacuum, both were equally attracted by the moon's gravitational force	1 1	Accept ' there is not frictional force due to air resistance'
	(ii)	Hammer	1	

PHYSICS SEC MAY 2010 - MARKING SCHEME - PAPER I

		Answer	Marks	Additional guidelines
1	(a)	Digital weighing apparatus / weighing apparatus / weighing balance / beam balance / top pan balance / electronic balance. Kilograms / kg		'Balance' only is not accepted 'Scales' is not accepted 'grams' is not accepted
	(b)	An amount of water is measured in a measuring cylinder Soldier is placed in water. The new volume of water is noted The volume of water displaced is equal to the volume of the soldier toy	1 1	Same method using displacement / eureka can method is acceptable Accept 'subtract / difference / minus'
	(c)	$\begin{aligned} \rho & =\mathrm{m} / \mathrm{V} \\ & =116 / 20 \\ & =5.8 \mathrm{~g} / \mathrm{cm}^{3} \text { or } 5800 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	1	For value For correct units
	(d) (i)	Wood, cork, jablo, plastic, etc.	1	Any other material which is commonly known to float on water. Do not accept 'paper'
	(ii)	Any value less than 1 The density of a material which floats on water must be less than the density of water	1	Accept 'value less than that of water'
		Total	10 marks	
2	(a) (i)	Gravity / force of gravity / weight / load	1	Do not accept 'force'
	(ii)	Force	1	
	(iii)	Gravitational potential	1	Accept 'potential'
	(b)	$\begin{aligned} \text { Work done } & =\mathrm{F} \times \mathrm{s} \\ & =250 \times 10 \times(3 \times 3.5) \\ & =26,250 \mathrm{~J} \text { or } 26.25 \mathrm{~kJ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept method using PE = mgh For value For correct units
	(c)	$\begin{aligned} \text { Power } & =\text { Energy } / \text { time } \\ & =26,250 /(2 \times 60) \\ & =218.75 \mathrm{~J} / \mathrm{s} \text { or } \mathrm{W} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(d)	$\begin{aligned} \text { Efficiency } & =(\text { power output } / \text { power input }) \times 100 \\ & =(218.75 / 437.5) \times 100 \\ & =50 \% \text { or } 0.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(e)	Energy is converted to work done against frictional forces, whilst some is wasted as sound energy, etc / energy required for lifter to lift its	1	The term 'friction' only is not acceptable

		Answer	Marks	Additional guidelines
		platform		
		Total	10 marks	
3	(a)	Momentum before collision is equal to momentum after collision provided that no external force acts on the system	1 1	
	(b) (i)	$0 \mathrm{kgm} / \mathrm{s}$	1	
	(ii)	$\begin{aligned} \text { Momentum } & =\mathrm{mxv} \\ & =1600 \times 20 \\ & =32000 \mathrm{kgm} / \mathrm{s} \text { or } \mathrm{Ns} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(c) (i)	$32000 \mathrm{kgm} / \mathrm{s}$	1	
	(ii)	$\begin{aligned} \text { Momentum after } & =(\mathrm{M}+\mathrm{m}) \mathrm{v} \\ 32000 & =(2400+1600) \mathrm{v} \\ 8 \mathrm{~m} / \mathrm{s} & =\mathrm{v} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(iii)	$\begin{aligned} \mathrm{KE} & =1 / 2 \mathrm{mv}^{2} \\ & =0.5 \times(1600+2400) \times 8 \times 8 \\ & =128,000 \mathrm{~J} \text { or } 128 \mathrm{~kJ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	For value For correct units
		Total	10 marks	
4	(a)	$\begin{aligned} & \mathrm{v}=\mathrm{u}+\mathrm{at} \\ & 0=9+(\mathrm{a} \times 0.1) \\ & \\ & =-90 \mathrm{~m} / \mathrm{s}^{2} \quad \text { Accept ' } 90 \mathrm{~m} / \mathrm{s}^{2} \text {, as question } \\ & \text { already refers to deceleration } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(b)	$\begin{aligned} \mathrm{F} & =\mathrm{ma} \\ & =1000 \times 90 \\ & =90,000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	For value For correct units
	(c)	$90,000 \mathrm{~N}$ Newton's $3^{\text {rd }}$ law of motion / for every force on one body there is an equal and opposite reaction force on some other body	1 1	Accept answers which state that the $90,000 \mathrm{~N}$ is in the opp. Direction
	(d)	To crumple, the car takes a longer time to stop, so it will decelerate less and the force involved would be smaller	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(e)	Seat belts / air bags / head restrains / tampered glass etc.	1,1	any reasonable answer; do not accept 'upgraded brakes' or 'bull bars'
		Total	10 marks	

		Answer	Marks	Additional guidelines
5	(a)	Correct scale Correct axes Correct points marked Size of graph at least half of graph paper	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	
	(b)	Directly proportional	1	Do not accept 'proportional' only
	(c)	At $250 \mathrm{~Hz}, \sqrt{ } \mathrm{~T}$ is $2.35 \pm 0.05 \mathrm{~N}$ $\begin{aligned} \mathrm{T} & =2.35^{2} \\ \mathrm{~T} & =5.5 \pm 0.26 \mathrm{~N} \end{aligned}$	1 1	
	(d)	Paper rider is placed on stretched wire, The students strike the tuning forks one after the other, touching the string with its stem, When the rider vibrates and falls off, tuning fork frequency is equal to natural frequency of wire	1 1 1	Accept answers which state that ${ }^{\text {' }}$
		Total	10 marks	
6	(a) (i)	Carpet is an insulator Tile floor is a poorer insulator of heat Tile floor feels colder as heat is transferred from her foot to the tile	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Accept 'better conductor of heat'
	(ii)	Conduction, convection, radiation	1,1,1	
	(b) (i)	Vacuum prevents / reduces heat transfer By conduction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	By convection
	(ii)	Aluminium reflects back heat radiation / bad absorber	1	
	(iii)	Copper is a good conductor of heat	1	'Good absorber of heat' is not accepted
		Total	10 marks	
7	(a) (i)		1	If arrows are not shown, give 0 marks For correct diagram

		Answer	Marks	Additional guidelines

		Answer	Marks	Additional guidelines
	(ii)	A current flowing through the ammeter indicates that fuse is working properly	1	
	(iii)	A variable resistor / rheostat	1	
	(iv)	In series with the fuse	1	
	(v)	Resistance is inversely proportional to current	1	Accept ' when resistance increases, current decreases' and vice-versa.
		Total	10 marks	
9	(a) (i)	Renewable energy sources can be used over and over again. Non-renewable energy sources can only be used once.	1 1	Accept 'renewable energy is infinite whilst non-renewable is finite'
	(ii)	Renewable - wind / solar / biomass / biodiesel Non-renewable - fossil / nuclear / fuel / wood	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Any suitable answer
	(b) (i)	Non-renewable	1	
	(ii)	Generate a lot of energy / relatively cheap / efficiently	1	Any suitable answer
	(iii)	Petrol / diesel / aviation fuel / gas / coal	1,1	Any suitable answer
	(iv)	$\begin{aligned} & \text { Wind energy } \rightarrow \text { electrical energy } \rightarrow \text { kinetic } \\ & \text { energy + heat }+ \text { sound } \\ & \text { Or Wind energy } \rightarrow \text { K.E. } \rightarrow \text { electrical energy } \\ & \hline \end{aligned}$	1,1	
		Total	10 marks	
10	(a) (i)	Solenoid, battery, switch / resistor	1,1,1	If setup cannot be used correctly then give 0 marks
	(ii)	As the number of turns of coil increases the strength of the magnetic field of the solenoid increases	1	
	(iii)	Insert a thicker iron core in the solenoid / current	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept 'insert an iron core'
	(b) (i)	The electric current through the coil induces a magnetic field in the iron core	1	Accept, 'it becomes magnetized'

		Answer	Marks	Additional guidelines
	(ii)	The soft iron armature is attracted to the iron core, pulling the hammer with it	1	
(iii)	At the contact point / when the armature is attracted / release the switch when it hits the gong	1		
(iv)	The soft iron armature is no longer attracted to the iron core and is pulled back to its original position by the spring / no longer magnetised / released	1		
		Total	10 marks	

