May 17 Paper 1

5d	The brass block was lagged to avoid energy losses.		
6a	Electrical energy to heat energy		
6b	For A: $\mathrm{P}=\mathrm{IV}, 1980=\mathrm{l} \times 220, \mathrm{I}=1980 / 220=9 \mathrm{~A}$ For $B: P=I V, P=6.4 \times 220=1408 \mathrm{~W}$		
6c	Kettle A, since it has the highest power.$\mathrm{P}=\frac{E}{t}, \quad 1980=\frac{E}{12 \times 60}, E=12 \times 60 \times 1980=1,425,600 \mathrm{~W}$		
6d	Kettle A: 10 A, Kettle B:7A		
6 e	Kettle B since it has a plastic outer case and so it can do without an Earth wire.		
7a	α - stopped by a thin sheet of paper β-stopped by a thin sheet of aluminium γ-slowed down by wall of lead		
7b	37 the mass number (no of protons and neutrons in the nucleus) 17 the proton number		
7c	Use tongs to handle them or wear protective clothing		
7d	Around us there is background radiation which is always there, coming from cosmic rays of the sun, building materials, x rays		
8ai	Energy cannot be created nor destroyed but it can only be changed from one form to another.		
8aii	$\mathrm{PE}=\mathrm{mgh}=4.8 \times 1.2 \times 10=57.6 \mathrm{~J}$		
8aiii	$\mathrm{P}=\frac{E}{t}, \quad \mathrm{P}=\frac{57.6}{7 \times 24 \times 3600}=\frac{57.6}{60480}=0.00095 \mathrm{~W}$		
8bi	Water is stored in very high places, then it is released and as it gradually falls through the pipes, PE is changed to KE. This will rotate turbines to generate electricity.		
8bii	It can be stored and used when required.		
9 a	A transformer which decreases the voltage of the primary coil		
9 b	For a transformer to work, it needs to have continuous cutting of magnetic flux so that a current is continuously induced. And since AC is continuously alternating in direction, then the cutting of magnetic flux is continuous.		
9c	$\frac{N p}{N s}=\frac{V p}{V s}=\frac{2500}{150}=\frac{230}{V s}, V s=\frac{230 \times 150}{2500}=13.8 \mathrm{~V}$		
9di	$\mathrm{P}=\mathrm{IV}=0.2 \times 230=46 \mathrm{~W}$		
9dii	P in secondary is same as P in primary, since ideal.$P=I V, 46=I \times 13.8, I=46 / 13.8=3.33 \mathrm{~A}$		
10ai	Force and perpendicular distance		
10aii	Moment $=\mathrm{Fxs}=15 \times 0.3=4.5 \mathrm{Nm}$		
10aiii	He should apply the force the furthese possible from the fixed point, at the end of the crowbar.		
$\begin{aligned} & \hline \text { W } \\ & \text { 10b } \end{aligned}$		ii. the object is starting to be lifted;	iii. the object is being lifted at constant speed.

May 17 Paper 2A

1ai	When two or more bodies act on each other, the total momentum before a collision is equal to the total momentum after the collision as long as there are no external forces acting on them.
1bi	- Set up apparatus as shown in diagram - Measure mass of each vehicle using a top pan balance - With trolley 2 at rest, let trolley one move towards trolley 2 - Using the time given by gate 1 , work out the velocity of trolley 1 before collision. - Using the time given by gate 2, work out the velocity ot he two trollies when they stick together, after the collision - Compare the total momentum before to the total momentum after the collision.
1bii	Momentum before $=$ momentum after $m v 1+m v 2=(m 1+m 2) v$
1biii	Make sure there are no external forces like friction acting on the vehicles
1ci	Momentum $=\mathrm{mv}=0.03 \times 6=0.18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
1cii	$\begin{aligned} & \text { Momentum before }=\text { momentum after } \\ & m v_{\text {ball }}+m v_{\text {tin }}=\left(m_{\text {ball }}+m_{\text {tin }}\right) v \\ & 0.18+0=(0.03+0.05) v \\ & V=0.18 / 0.08=2.25 \mathrm{~m} / \mathrm{s} \end{aligned}$
1ciii	$\begin{aligned} & \text { Momentum before }=\text { momentum after } \\ & m v_{\text {ball }}+m v_{\text {tin }}=\left(m_{\text {ball }}+m_{\text {tin }}+m_{\text {tin }}\right) v \\ & (0.07 \times u)+0=(0.03+0.05+0.05) 3.5 \\ & 0.07 u=0.255 \\ & u=0.255 / 0.07=3.64 \mathrm{~m} / \mathrm{s} \end{aligned}$
Iciv	$\begin{aligned} & \mathrm{Ft}=\mathrm{mv}-\mathrm{mu} \\ & 0.4 \mathrm{~F}=0.07(-1-1.5), \quad \mathrm{F}=-2.5 / 0.4=-6.25 \mathrm{~N} \end{aligned}$
2a	Temperature B is higher since the greater the temperature, the more KE the particles have and the greater the pressure of the particles. Therefore, they push more on the liquid
2 bi	$\mathrm{P}=\frac{F}{A}=\frac{10}{(5 \div 100 \div 100)}=20,000 \mathrm{~Pa}$
2 bii	20,000 Pa
2 biii	$\begin{aligned} & \mathrm{P}=\frac{F}{A}, 20000=\frac{F}{0.0031}, F=20000 \times 0.0031=62 \mathrm{~N} \text { each piston } \\ & \therefore \text { Total } \mathrm{F}=62 \times 2=124 \mathrm{~N} \end{aligned}$
2 biv	The force on each piston will still remain 62 N . Therefore, each wheel will experience a force of 124 N (two pistons each tyre). Therefore, total force on car would be $124 \times 4=$ 496N on the car.

2ci	h increases, d increases ρ decreases, d decreases Container sealed with lid eliminates atmospheric pressure, so d will decrease
2cii	$\begin{aligned} & P=\text { and } P=h \rho g, \quad h \rho g=\frac{F}{A}, \quad 0.15 \times 1000 \times 10=\frac{F}{0.00002} \\ & F=1500 \times 0.00002=0.03 \mathrm{~N} \end{aligned}$
3 a	Transverse : the particles vibrate at right angles to the direction of travel of the wave Longitudinal : the particles vibrate parallel to the direction of travel of the wave
3bi	Transverse
3 bii	- The angle of incidence is equal to the angle of reflection - The normal, the incident ray and the reflected ray all lie on the same plane
3biii	
3 biv	He can change the angle of inclination of the window, so as to change the angle of incidence and the angle of reflection
3ci	They all obey the equation $\mathrm{v}=\mathrm{f} \lambda$
3 cii	Gamma waves
3ciii	$v=\mathrm{f} \lambda, 2.997 \times 10^{8}=\lambda \times 3 \times 10^{19}, \lambda=\frac{2.997 \times 10^{8}}{3 \times 10^{19}}=9.99 \times 10^{-12} \mathrm{~m}$
3 di	
3dii	Refraction

3diii	(since gap is slightly bigger than wavelength)
3div	diffraction
3dv	frequency stays the same, velocity decreases
4a	Copper, conductor, insulators
4bi	
4bii	Current
4biii	- Setup apparatus as shown. - Connect one wire using crocodile clips and read the current from the ammeter. Note results in a table. - Repeat with the different thicknesses of the wire. - Plot a graph of current and thickness of wire.
4biv	Check for loose and rusted connections or Take readings at eye level to avoid parallax errors when taking readings from the ammeter.
4 ci	Thicker wire, current increases
4cii	The thicker the wire, the greater the current
4d	Current is directly α to thinkness of wire
4 e	Length of wire, the longer the wire is the greater is the current and the weaker is the current
4f	Brown - Live - current passes through this wire Blue - Neutral - to complete the circuit Yellow/Green - Earth - a path for current to flow from the case of the device to the ground if there is a fault
5a	The pointer is attached to the spring, as a precaution, so the extension can be read with no parallax

| 5b |
| :--- | :--- |
| 5c |

5hi	The spring no longer remains elastic, it becomes deformed and it no longer obeys Hooke's law
5hii	The spring needs to obey Hooke's law so that the Force of attraction to the electromagnet remains directly proportional to the extension.

