MATSEC
Examinations Board

Marking Scheme
SEC Physics
Main Session 2019

Marking schemes published by the MATSEC Examination Board are not intended to be standalone documents. They are an essential resource for markers who are subsequently monitored through a verification process to ensure consistent and accurate application of the marking scheme.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with the MATSEC Examinations Board when in doubt.

PAPER 1

Question			Answer	Mark	Guidelines
1.	a	i	$\begin{aligned} & \mathrm{a}=\frac{v-u}{t} \\ & \mathrm{a}=\frac{2-0}{1.26}=1.59 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ (accept the use of gradient)	2	1 mark for working 1 mark for answer \& units
		ii	$\begin{aligned} & \mathrm{F}=\mathrm{ma} \\ & \mathrm{~F}=0.03 \times 1.59 \\ & \mathrm{~F}=0.048 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Remove 1 mark if the mass is not converted into kg.
		iii	$\begin{aligned} & \text { Height fallen = area under graph } \\ & =1 / 2 b \times h \\ & =1 / 2(1.26 \times 2)=1.26 \mathrm{~m} \end{aligned}$	1 1	1 mark for working 1 mark for answer Allow the use of equations of motion to obtain the answer.
	b	i	The mass of the Moon is smaller than the mass of Earth	1	Do not accept 'bigger' if mass is not stated.
		ii	Unbalanced F = ma Weight - Air resistance $=\mathrm{ma}$ $\begin{aligned} & 0.3-0.27=0.03 a \\ & a=0.03 / 0.03=1 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	1 mark for weight 1 mark for method 1 mark for answer \& unit
TOTAL				10	
2.	a	i	Extension is directly proportional to load / stretching force provided elastic limit is not exceeded.	1 1	If the $1^{\text {st }}$ part is not correct, but the condition of elastic limit is correct, do not award any marks. Award full marks if candidates state that 'extension is proportional to mass' given that the elastic limit is not exceeded.
		ii	A pointer	1	
		iii	Pointer drawn horizontally below bottom of spring.	1	Accept any object used as a pointer, even a straight line without an arrow, as long as it is in the correct position and touching the ruler.
		iv	A suitable precaution such as: - allowing spring to settle before taking readings; - read ruler perpendicularly.	1	Do not accept vague replies e.g. read ruler accurately.
		V	stretching force/load (N) extension ($\mathrm{mm} / \mathrm{cm} / \mathrm{m}$)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If the stretching force is not in position (i), and extension is not in position (ii), award only 1 mark.
	b		$\begin{aligned} & \text { When mass }=0.20 \mathrm{~kg}, \text { extension }=7.5 \mathrm{~cm} . \\ & \text { When mass }=0.50 \mathrm{~kg}, \text { extension }=?(18.75 \mathrm{~cm}) \\ & \text { New length }=18.75+5=23.75 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Accept methods using mass /or force.
TOTAL				10	
3	a			4	1 mark each

		b	i	P = IV I = 1270 / 230 I 5.5 A	

		ii	Speed of sound = gradient Gradient $=\frac{\Delta y}{\Delta x}=$ \qquad m / s Allow for values close to $320 \mathrm{~m} / \mathrm{s}$ as long as the points and working are correct.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 mark for choosing to use gradient 1 mark for answer \& unit Award marks only if gradient is used. No marks should be awarded if 1 coordinate is used in an equation of motion.
		iii	Sound will take less time to travel. This is because sound travels faster in water.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Do not accept because water is denser.
TOTAL				10	
6.	a		Isotopes are elements with the same number of protons (and/or atoms of the same element) but different mass number (or number of neutrons).	1 1	
	b	i	43	1	
		ii	99-43=56	1	
		iii	43	1	
	C		High Penetration Power or, low ionisation power or, has no charge or, EM wave.	1	Accept any other Gamma characteristic. Do not accept 'high frequency' or 'short wavelength', as long as they don't specify that it is an EM wave with those properties. High frequency or short wavelength is subjective, unless applied only to the EM spectrum.
	d		Sterilisation of equipment, kill cancer cells (chemotherapy), in industry to detect defects in metal castings, etc.	1	Accept any other Gamma use. Do not accept vague answers such as 'cancer' only, or MRI.
	e		So it stops being dangerous for patients after a short time.	1	Accept also 'so that it decays after a short time' without referring to the patients' safety.
	f		Initial mass $=2 \mathrm{~g}$ After 6 hours $=1 \mathrm{~g}$ After 12 hours $=0.5 \mathrm{~g}$ After 18 hours $=0.25 \mathrm{~g}$	1 1	Working Answer \& Units
Total				10	
7.	a	i	$\begin{aligned} \mathrm{m} & =\rho \mathrm{v} \\ & =1000 \times\left(2.0 \times 10^{-3}\right) \\ & =2.0 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 working 1 answer \& unit
		ii	$2.04-2.00=0.04 \mathrm{~kg}$	1	
		iii	$\begin{aligned} & v=\mathrm{m} / \rho \\ &=0.04 / 1380 \\ &=2.9 \times 10^{-5} \mathrm{~m}^{3} \\ & \text { Total volume }=2.9 \times 10^{-5} \times 50000000=1449.3 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 answer \& unit 1

			iv	Density increases.	1

	C		Seasons	1	Do not accept answers that include both 'day/night' and 'seasons'. Only 'seasons' must be mentioned to award the full 1 mark.
	d		$\begin{aligned} \text { time } & =\text { distance } / \text { speed } \\ & =2.25 \times 10^{11} / 3 \times 10^{8} \\ & =750 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 mark for working 1 mark for answer \& unit
			TOTAL	10	
10.	a		When a system is in equilibrium, the total clockwise moments about a pivot = total anticlockwise moments about same pivot.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	b	i	An arrow pointing downward at the mid-point of the ruler.	1	
		ii	$\begin{aligned} & \text { Weight of ruler }=0.120 \times 10=1.20 \mathrm{~N} \\ & \text { Moment of weight of ruler }=\mathrm{Fs} \\ & =1.20 \times 0.35 \\ & =0.42 \mathrm{Nm} \end{aligned}$	1 1	Answer should be in Nm to be correct. Ncm are not accepted.
		iii	$\begin{aligned} \text { Clockwise moments } & =\text { Anti-clockwise moments } \\ (2 \times 0.75)+0.42 & =\mathrm{F} \times 0.50 \\ \mathrm{~F} & =3.84 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	3 marks for method 1 mark for answer \& unit If the candidates do not include the moment of the ruler (0.42 Nm) in the clockwise moments, but then proceed to work everything correctly, deduct 1 mark from the method and 1 mark for the answer.
	c		smaller	1	
			TOTAL	10	

PAPER 2A					
Question			Answer	Mark	Guidelines
1.	a.	i		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 mark each for drawing and labelling Award full marks if the arrow of upthrust is drawn below the object, as long as it is acting upward. Weight should be from centre of object. Do not accept gravity instead of weight.
		ii	$-10 \mathrm{~m} / \mathrm{s}^{2}$	1	Value and unit
		iii	$\begin{aligned} \mathrm{F} & =\mathrm{ma} \\ & =0.1 \times(-10) \\ & =-1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Working Answer \& unit If the candidates use +10 instead of -10, use F.T.
		iv	$0 \mathrm{~m} / \mathrm{s}$	1	Award full marks even without units.
		v	$\begin{aligned} & \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\ & 0^{2}=\mathrm{u}^{2}+2(-10)(9) \\ & \mathrm{u}=13.4 \mathrm{~m} / \mathrm{s} \end{aligned}$	2	1 mark for working 1 mark for answer \& unit If u and v are inverted, do not award any marks, as both method and answer will be incorrect. Accept the use of equations for conversion of energy from KE to PE.
		vi	$\begin{aligned} & v=u+a t \\ & 0=13.4+(-10) \times t \\ & t=1.34 \mathrm{~s} \end{aligned}$	2	1 mark for method 1 mark for answer \& unit Allow for the use of other equations of motion to give the right answer. If u and v are inverted, do not award any marks, as both method and answer will be incorrect.
	b.		Deceleration increases. It will reach less height.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	c.	i	$\begin{aligned} \mathrm{p} & =\mathrm{m} \mathrm{v} \\ & =(0.042)(300) \\ & =12.6 \mathrm{kgm} / \mathrm{s} \end{aligned}$	2	1 mark for method 1 mark for conversion of unit
		ii	$\begin{aligned} 12.6 & =(0.042+0.1) \mathrm{v} \\ \mathrm{v} & =88.7 \mathrm{~m} / \mathrm{s} \end{aligned}$	2	1 mark for method 1 answer \& units
	d.	i	For every action there is an equal and opposite reaction. Newton's third law of Motion OR The law of conservation of momentum	1 1	

		ii	The foam will increase the time of impact between the rifle and the shoulder thus reducing the force.	1 1	1 mark for increase in time, 1 mark for decrease in force
			TOTAL	20	
2	a	i	Any TWO of the following: - - They can all travel in a vacuum. - They can all be reflected, refracted and diffracted. (these can be listed as 3 separate properties) - They are all transverse waves. - They are all carriers of energy.	2	Do not accept 'have no mass'.
		ii	Any TWO of the following: Gamma / X-Rays / Ultra Violet	2	
		iii	$\begin{aligned} V & =f \times \lambda \\ f & =3 \times 10^{8} / 25 \times 10^{-6} \\ & =1.2 \times 10^{13} \mathrm{~Hz} \end{aligned}$	2	1 mark for method 1 mark for answer \& unit
		iv	Infrared - TV remote controls, burglar alarms, IR cameras. Radio waves - radio communication, space exploration, radar.	1	Accept any other correct answers such as oven and heater.
	b	i	Convex/Converging	1	
		ii	Refract / Converge	1	Do not accept 'bend'.
		iii	Position the lens between a distant bright source of light and a screen. Move the lens to and from until a bright image of the distant object is obtained on the screen. Measure the distance between the lens and the screen.	1 1 1	Accept also positioning the object and image until they are both at $2 F$, and then dividing by 2.
	c	i	Any value smaller than 120 mm .	1	Do not accept 'any value around $120 \mathrm{~mm}^{\prime}$, it has to be smaller.
		ii	$\begin{aligned} \text { Height of image } & =\text { height of object } \times \text { magnification } \\ & =1.5 \times 4 \\ & =6 \mathrm{~cm} \end{aligned}$	2	1 for method 1 for answer \& unit
		iii		2	1 mark for the correct drawing of rays, including arrows (even if they don't fit in full grid) 1 mark for drawing and labelling the image 1 . Do not deduct marks if the rays extended backwards are not dotted.
		iv	Virtual Upright	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Do not accept 'not real'.
			TOTAL	20	
3	a	i	conduction	1	
		ii	radiation	1	
		iii	conduction or convection	1	
		iv	conduction AND convection	2	1 mark each

	b	i	1. fill each flask with same volume of hot water at same temperature 2. read initial temperature of both with a thermometer 3. repeat temperature readings at regular time intervals			1 1 1 1	If point 1 is not mentioned in the method, remove the marks. However then accept them as correct precautions in (ii). Do not award the marks twice if they are used both in the method and precautions.
		ii	Any TWO valid precautions, such as: - leave flask unopened for shortest time when taking readings; - avoid other heat sources in the room; - stir water.			2	1 mark each
		iii.	Time/s	Temperature of water in glass (${ }^{\circ} \mathrm{C}$)	Temperature of water in steel flask (${ }^{\circ} \mathrm{C}$)	2	1 for temperature in glass/steel 1 mark for unit even if used just with 1 heading
		iv	y-axis (temperature $/{ }^{\circ} \mathrm{C}$)			1 2	Quantity and unit Award 1 mark only if straight lines are drawn. Deduct 1 mark if the temperature is reduced down to zero. It should stop at room temperature.
		v	Facilitates comparison of curves .			1	
		vi	The one with smaller gradient at the beginning is better at keeping liquid at their temperature.			1	Accept also the flask that keeps liquid at the highest temperature after a given time.
	C		Since it is an insulator, it reduces heat transfer from outside to inside of flask.			1 1	
TOTAL						20	
4.	a	i	- The apparatus was switched on and the variable resistor was set. - The resistance was decreased gradually until the copper wire melted. - The current reading was taken as soon as the wire melted. - This procedure was repeated each time by varying the thickness of the copper wire.			3	2 marks for correct symbols 1 mark for correct placement Accept the symbol of a fuse instead of wire.
		ii				4	1 mark for each correct statement.

	ii	Increase the number of turns around the iron core Increase the current/ voltage Effect: This increases the magnetic field strength	1	1
iii	The switch is switched on and current flows through the iron core and it becomes temporary magnetised. The iron rod is attracted towards the temporary magnet. The contact points make contact. A complete circuit is now formed, and the bulb lights up.	1	1	1
iv	As the iron core becomes magnetised it will attract the iron bar. The points of contact will separate (break circuit). The bulb will not light up.	1	1	1
v	As a circuit breaker, if a high current passes, it will break off the current around the house.	1	1	TOTAL

		vi	Curve with smaller gradient at the beginning (top curve).	1	Accept also the flask that keeps liquid at the highest temperature after a given time.
	C		They do not allow heat to enter from the surroundings, as Insulation works both ways.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
			TOTAL	20	
4.	a	i		4	Do not accept AMP METER
		ii	wire variable resistor current decreased melted	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
		iii	The thicker the wire the higher the current needed to burn the wire.	1	
	b	i	$\mathrm{R}_{\mathrm{T}}=4+2=6 \Omega$	1	
		ii	$\begin{aligned} & I=V / R \\ & I=12 / 6=2 A \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Deduct 1 mark if unit is missing.
		iii	No the fuse will not melt	1	Use FT from previous answer.
		iv	$\begin{aligned} & 1 / R_{T}=0.5+0.25=0.75 \\ & R_{T}=1.3 \Omega \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Deduct 1 mark if unit/units are missing.
		v	$\begin{aligned} & \mathrm{I}=\mathrm{V} / \mathrm{R} \\ & \mathrm{I}=12 / 1.3 \\ & \mathrm{I}=9.2 \mathrm{~A} \end{aligned}$	1 1	Deduce 1 mark if unit/units are missing
		vi	Yes the fuse will burn.	1	Use FT from previous answer.
	C		Circuit breaker OR Earth wire	1	Accept 'Salva Vita', plastic casing \& double insulation.
			TOTAL	20	
5.	a		Steel, Direct	1,1	
	b			3	1 (N and S) 1 (drawing of field lines) (not intersecting) not dotted 1(direction of arrows from north to south)
	C		Heating Hammering Passing an A.C. through the bar Dropping	1	Accept any
	d	i	As the current passes around the core, it becomes an electromagnet.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept 'becomes temporarily magnetised'.

	ii	2, 3, 1, 4, 5	5	1 mark for each correct answer
	iii	Increase the number of turns around the iron core Increase the current / voltage	1	
	iv	As the iron core becomes magnetised it will attract the iron rod. The points of contact will separate. The bulb will not light up.	1	

