MATSEC
Examinations Board

Marking Scheme
SEC Physics
Main Session 2021

Marking schemes published by the MATSEC Examination Board are not intended to be standalone documents. They are an essential resource for markers who are subsequently monitored through a verification process to ensure consistent and accurate application of the marking scheme.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with the MATSEC Examinations Board when in doubt.

Paper 1

Question			Suggested Answer	Marks Distribution	Marks
1	a		Density is the mass per unit volume of a substance.	Do not accept the equation	1
	b		$\mathrm{kg} / \mathrm{m}^{3}$	Do not accept $\mathrm{g} / \mathrm{m}^{3}$	1
	c		Foam concrete has pockets of air / spaces / holes. OR Concrete has more compact particles. These decrease the mass per unit volume.	1 1	2
	d	i	$\begin{aligned} & V=1.5 \times 1.2 \times 0.98 \\ & V=1.764 \mathrm{~m}^{3} \end{aligned}$	1 1 Deduct 1 mark if the height is in cm	2
		ii	$\begin{aligned} & \rho=\frac{m}{V}=\frac{1040}{1.764} \\ & \rho=589.57 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$	1	2
		iii	Mixture X will float and Porous clay brick will sink.	Award 1 mark if answer states that they will both float or both sink	2
Total:					10
2	a		$\begin{aligned} & a=\frac{v-u}{t}=\frac{53.61-26.67}{2.5} \\ & a=10.776 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
	b	i	Newton's first law or Law of inertia. A body in motion will remain in constant motion unless acted upon by an external force (there is no need to state that an object at rest remains at rest, as it does not apply in this situation).	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
		ii	Increase the time of impact. Reducing the force on the driver.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
		iii	Air Bag, Crumple Zones, Headrest, Cushioned Interior, Tempered Glass.	1 mark each for any two	2
		iv	$\begin{aligned} & s=\frac{(u+v) t}{2} \\ & s=\frac{(53.61+0) 0.18}{2} \\ & s=4.82 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2

		ii	Hard.		1
		iii	Place bar inside a solenoid/coil of wire. Pass direct current through solenoid for some time.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
	b	i	Mark S of magnet at geographic N \& N at geographic S pole.		1
		ii	Since direction of field lines from N to S .		1
		iii	Magnetism induced in them as they have been standing in earth's magnetic field.		1
		iv	Nearby magnetic materials may affect the compass. Leading to a wrong direction bearing.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
				Total:	10
10	a	i	Time taken for half the atoms/nuclei to decay. OR Time taken for the activity (or count rate) to decay by half.		1
		ii	Half-life $=6 \mathrm{hrs}$. Time taken to decay from, say, 70000 to 35000.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
		iii	Starting from 70000 on y -axis AND with a smaller gradient.		1
	b	i	Having same no of protons but different no of nucleons/neutrons.	Accept atomic and mass numbers instead	1
		ii	6 protons and 8 neutrons.		1
	c	i	$1 / 4$ atoms remaining $=1 / 2 \times 1 / 2=2$ half-lives. 2 h.l. $=5700$ years $\times 2=11400$ years.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
		ii	No C-14 atoms left to measure after such a long time. OR Radioactive nuclei would have decayed.		1
		iii	A longer half-life.	Accept numerical values, if stated, of half-life 10 million years and above.	1
				Total:	10

Paper 2A

		iii Quantity:- Voltage Unit:- $/$ /Volts		

Paper 2B

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& d \& \& Silver is a bad absorber/emitter of radiation. It reflects infrared radiation to stay inside the kettle. \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& 2 \\
\hline \& e \& \& Energetic particles leave (evaporation) / convection currents. \& \& 1 \\
\hline \& f \& \& Cover the spout (close it). \& \& 1 \\
\hline \& \multirow[t]{7}{*}{g} \& i \& The water molecules close to the heating source start to vibrate /move more rapidly. This increases the distance between the molecules which increases the volume (space) of water at that point. This will cause a decrease in density so that the hot water will rise to the top while the cold water will sink to the bottom. \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& 3 \\
\hline \& \& ii \& \[
\begin{aligned}
\& Q=m c \Delta \theta \\
\& 265300=0.75 \times c \times(100-18) \\
\& c=4313.82 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& 2 \\
\hline \& \& iii \& \begin{tabular}{l}
Due to energy transfer to the kettle and surroundings. \\
(Although it is not the main cause for the variation obtained, impurities in the water was accepted, since the water used was not pure water).
\end{tabular} \& \& 1 \\
\hline \& \& iv \& \[
\begin{aligned}
\& Q=m c \Delta \theta \\
\& 46200=0.75 \times 4200 \times \Delta \theta \\
\& \Delta \theta=14.67^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& 2 \\
\hline \& \& v \& Final temperature \(=100-14.67=85.33{ }^{\circ} \mathrm{C}\) \& \& 1 \\
\hline \& \& vi \& Time \(=2 \times 60 \times 60=7200 \mathrm{~s}\) \& \& 1 \\
\hline \& \& vi \& \[
\begin{aligned}
\& \text { Power }=\frac{\text { energy }}{\text { time }}=\frac{46200}{7200} \\
\& \text { Power }=6.42 \mathrm{~W}
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
1
\end{tabular} \& 2 \\
\hline \& \& \& \& Total: \& 20 \\
\hline \multirow[t]{5}{*}{3} \& \multirow[t]{4}{*}{a} \& i \& Dipping a straight bar repeatedly in the water/wave generator. \& \& 1 \\
\hline \& \& ii \& To change the depth of water in a region tank. \& \& 1 \\
\hline \& \& iii \& As the waves travel from deep to shallow water there is a change in wave direction as shown in Figure 3. This phenomenon is known as refraction and is caused by the change in speed as the waves cross the boundary into shallow water. The distance between two wavefronts, known as wavelength, changes also. There is however no change in frequency as this depends only on the source producing the vibrations. \& \& 4 \\
\hline \& \& iv \& \begin{tabular}{l}
Same as: Spacing of wavefronts (wavelength). OR \\
The wave speed decreases as well in this case. \\
Different than: No change in direction.
\end{tabular} \& 1

1 \& 2

\hline \& b \& \& | Similarity: Both transverse or both carry energy. |
| :--- |
| Differences: Water needs a medium, EM travel in vacuum, or water travels at speeds smaller than the speed of light, while EM waves all travel with the speed of light in vacuum. | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \& 2

\hline
\end{tabular}

