Physics Sept 2012

Paper IIB

Iai)

Iaii)

I aiii) weigh measuring cylinder on a top pan balance $\mathrm{m}_{\text {I }}$ put orange juice in measuring cylinder, measure new mass, m_{2} \mathbf{m} of orange juice $=\mathbf{m}_{\mathbf{2}} \boldsymbol{-} \mathbf{m}_{\mathbf{l}}$

Iaiv) use mass found in laiii) and volume from measuring cylinder in the equation density = mass/volume
lb) highest density - white grape juice
lowest density - pomegranate juice
since the material with the highest density sinks and the material with the least density floats
Ic) if glasses are identical and since volume is constant, use a top pan balance to find the mass of each full glass.
the heaviest glass would be the salted water since its density is greater than that of pure water
fill measuring cylinder with water, read volume $\mathbf{V}_{\mathbf{I}}$
Place tower in cylinder, read volume \mathbf{V}_{2}
To find volume of tower, $\mathbf{V}_{\mathbf{2}}-\mathrm{V}_{\mathbf{1}}$
Idii) lower the tower gently using a non-absorbent string
Take reading of volume at eye level from the bottom of the meniscus
Idiii) $\quad 8.92 \mathrm{~g} / \mathrm{cm}^{3}$
Idiv) No, because density is constant for the same material no matter the size

2ai) vacuum is a good insulator so it will prevent heat transfer by conduction
2aii) convection and conduction
radiation
2aiv) shiny surface inside of flask since shiny surfaces are good reflectors of heat

2av) rubber or plastic since they are good insulators
2avi)

2avii) radiation since the outside of the flask is not a shiny surface and so heat is not reflected but passes through

2bi)

2bii) so that the air between the heater and block is filled with a better conductor than air
2biii) to stop heat losses by conduction
2biv) current, voltage and time

3ai)

3aii) a normal is drawn at the point of incidence
Angle between normal and incident ray is angle of incidence
Angle between the normal and refracted ray is angle of refracgtion perform experiment in a dark room and use a fine beam of light

When marking the postion of the beam, mark fine crosses at the centre of the beam
3aiv) air to glass : ray bent towards the normal
Glass to air : ray bent away from normal
3bi) speed slows down since fibre is denser than air
3bii) 65°
3biii) 65° since total internal reflection occurs
3biv) Angle X is larger than the critical angle
3bv) total internal reflection
3ci) refraction
3cii) $\quad 30-10=20 \mathrm{~cm}$
3ciii) $\quad 1.5$

4ai) planets move around the sun along the same elliptical path
4bi) Mercury
4bii) 687 days
4biii) sun is at centre, Earth rotates about its own axis, when one side of Earth is facing the sun, that side is in daytime, while opposite side is in night time since it is facing away from the sun

4biv) the tilt of the Earth and the position along the Earth's revolution around the sun
4ci) it is a unit of distance, referring to the distance travelled by light in a year
4cii) since this star is a very very long distance away from Earth, the light coming from it takes long to arrive on Earth, hence we see light that started to travel years ago

4ciii) telescope
4civ) a dwarf planet has not cleared its neighbourhood while a planet has
4 cv a collection of millions and millions of stars
4di) although they are small, they are travelling at a very high speed so they have a large momentum and a big amount of energy, hence collision would have a large impact

4dii) 350,000J
4diii) heat and sound energy

5a) work is the energy when an object is moved over a distance by an external force
5b) height and weight
5c) ??
5di) $2 m$
5dii) 900J

5diii) 30W
5div) $\quad t$ decreases, \mathbf{P} increasesm therefore more work done in a second since \mathbf{P} is inversely proportional to t
5ei) $4 N$
5eii) $\quad 20 \mathrm{~m} / \mathrm{s}^{2}$
5eiii) m increases, a decreases since \mathbf{a} is inversely proportional to \mathbf{m} when pulling force remains constant

